MATHEMATICAL APPROACH TO CLIMATE CHANGE IMPACTS
INdAM Workshop 2017
Rome, March 13 – 17

Scientific and Organizing Committee

P. Cannarsa
University Tor Vergata, Rome

D. Mansutti
Institute for Applied Mathematics “M. Picone”
IAC – CNR, Rome

A. Provenzale
Institute of Geosciences and Georesources
IGG – CNR, Pisa
Contents

A ckowledgements

PROGRAM and SPEAKERS

ABSTRACTS

GENERAL INTRODUCTORY

The mathematics of climate change and of its impacts
 Michael Ghil

Climate as a dynamical system
 Antonello Provenzale

ECOSYSTEMS

Connectivity and dynamics of space-explicit ecological and
epidemiological systems under variable climate
 Marino Gatto, E. Bertuzzo, L. Carraro, R. Casagrandi, L. Mari, P. Melià, A. Rinaldo

Modeling vegetation pattern formation in drylands
 Jost van Hardenberg

The Gulf of Mexico: anthropogenic impacts, turbulence, oil, coral larvae and evolution
 Annalisa Bracco

Mathematical tools for controlling invasive species in Protected Areas
 D. Lacitignola, F. Diele, F. Casella, Carmela Marangi, A. Martiradonna & A. Provenzale

Early warning of climate tipping points and their policy implications
 Tim Lenton

HYDROLOGY

Stochastic modeling of flow and contaminant transport in heterogeneous porous
 formations
 Aldo Fiori

Lagrangian dispersion in turbulent environments
 Federico Tosch

Modeling and causality analyses of climate variability
 Klaus Fraedrich

COSMO-CLM climate projections over Italy and examples of application
to hydrological impact studies
 Edoardo Bucchignani & P. Mercogliano

Reduced Complexity Modeling of eco-hydrologic change in
 intensively managed landscapes
 Efi Foufoula-Georgiou
GLACIOLOGY

Nonlinear response of glaciers to climate change
Johannes Oerlemans

Energy-balance and thermofluidodynamics modelling of the Adamello Glacier in a future climate scenario. When will the largest Italian glacier likely disappear?
Robert Ranzi, E. Svanera, C. Baroni, S. Barontini, P. Caronna, G. Grossi & M.C. Salvatore

A model for the flow of rock glaciers
Kumbakonam R. Rajagopal

A quick check of the existence of a subglacial lake at Svalbard
Daniela Mansutti, E. Bucchignani and P. Glowacki

The formation of drumlins
Andrew C. Fowler

Mathematical and numerical modelling of ice sheets and glaciers
Ralf Greve

MONITORING

On a class of multiscale problems arising in oceanic and atmospheric processes
Reza Malek-Madani

Some mathematical problems on plume as aerosols
Masahiro Yamamoto

Lipschitz stability for an inverse problem for the Sellers model
Patrick Martinez

The inversion problem in radiative transfer
Luca Sgheri

Fukushima aerosols and their long-term trends
Yuko Hatano

Carbon dioxide time series analysis: a new methodological approach for event screening categorization
Stefano Bianchi, A. G. di Sarra, S. Piacentino, W. Plastino and D. Sferlazzo
Mathematical tools for controlling invasive species in Protected Areas
D. Lacitignola, F. Diele, F. Casella, C. Marangi, A. Martiradonna & A. Provenzale.

A challenging task in the management of Protected Area is to control the spreading of invasive species, either floristic or faunistic [1], and the preservation of indigenous endangered species, tipically competing for the use of resources in a fragmented habitat. We review two cases of control strategies [2,3] on the wolf-wild boar populations in a Southern Italy Protected Area belonging to the Natura 2000 network. In our case, the challenge for the regional authorities is to plan conservation policies able to maintain the population of wolves while limiting, at the same time, the presence of wild boars, here considered as an invasive species, because of their negative impact on agriculture. The first control strategy reviewed [2] consider the impact of control policies on predator-prey dynamics in fragmented habitats by simulating different dynamical scenarios theoretically analysed with the aggregation method. The key warning from the model is that a very careful combination of control - through proper planning programs - and migration processes among patches of habitats - through the existence of suitable ecological corridors - must be used in order to properly limit the wild-boar population while preserving wolves from extinction. A further model [3] has been developed to apply the Z-control approach to a generalized predator-prey system and consider the specific case of indirect control of the prey (invasive) population. The key role of the design parameter of the model for the successful application of the method is stressed and critical values of the design parameter are found, delimiting the parameter range for the effectiveness of the Z-method. A further development is to optimize the control strategy by taking into account the spatio-temporal features of the invasive species control problems over large and irregular environments. The approach will be used in a management scenario where the invasive species to be controlled with an optimal allocation or resources is the *Ailanthus altissima*, infesting the Alta Murgia National Park, study site of an on-going H2020 project (ECOPOTENTIAL). This species is included in the top 20 list of the most invasive species in Europe and its eradication and spread control is object of research projects and biodiversity conservation actions in both protected and urban areas [4]. This work has been carried out within the H2020 project 'ECOPOTENTIAL: Improving Future Ecosystem Benefits Through Earth Observations', coordinated by CNR-IGG (http://www.ecopotential-project.eu). The project has received funding from the European Union’s Horizon 2020 research and innovation programme (grant agreement No 641762).

References