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This study presents the results of multi-seasonal WorldView-2 (WV-2) satellite images classification for the
mapping of Ailanthus altissima (A. altissima), an invasive plant species thriving in a protected grassland area of
Southern Italy. The technique used relied on a two-stage hybrid classification process: the first stage applied a
knowledge-driven learning scheme to provide a land cover map (LC), including deciduous vegetation and other
classes, without the need of reference training data; the second stage exploited a data-driven classification to: (i)
discriminate pixels of the invasive species found within the deciduous vegetation layer of the LC map; (ii)
determine the most favourable seasons for such recognition. In the second stage, when a traditional Maximum
Likelihood classifier was used, the results obtained with multi-temporal July and October WV-2 images, showed
an output Overall Accuracy (OA) value of =91%. To increase such a value, first a low-pass median filtering was
used with a resulting OA of 99.2%, then, a Support Vector Machine classifier was applied obtaining the best A.
altissima User’s Accuracy (UA) and OA values of 82.47% and 97.96%, respectively, without any filtering. When
instead of the full multi-spectral bands set some spectral vegetation indices computed from the same months
were used the UA and OA values decreased. The findings reported suggest that multi-temporal, very high re-
solution satellite imagery can be effective for A. altissima mapping, especially when airborne hyperspectral data
are unavailable. Since training data are required only in the second stage to discriminate A. altissima from other
deciduous plants, the use of the first stage LC mapping as pre-filter can render the hybrid technique proposed
cost and time effective. Multi-temporal VHR data and the hybrid system suggested may offer new opportunities
for invasive plant monitoring and follow up of management decision.

1. Introduction Member States have approved a specific regulation (Regulation 1143/

2014). This act supports interventions aimed at prevention, early de-

Alien plants, also termed non-native, exotic or allochthon plants,
can modify diversity and functioning of ecosystems especially when
they exhibit invasive tendencies (Pysek and Richardson, 2010; Foxcroft
et al., 2013). At present, highly competitive woody invasive species,
such as A. dltissima (Mill) Swingle, are causing impoverishment in
natural habitats and consequent economic losses (Kowarik and Saumel,
2007; Bostan et al., 2014; Niphadkar et al., 2017).

To address problems caused by invasive alien species, reduce and
monitor their negative impact on the environment, the European
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tection, rapid eradication and management of invasive species
spreading.

Traditionally, early detection of alien species has been based on
evidence from in-field inspections. The resulting maps can be very de-
tailed and rich not only in information on the distribution of specimen,
but also on possible management options as eradication and mon-
itoring. Although useful, in-field data and provisions can be burdened
by limits. These include aspects such as workload, area accessibility,
extent and speed of alien plants invasion. Due to these factors, extensive
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in-field inspections can be both time consuming and costly especially in
areas where implementation of monitoring would require feasibility
and quick management decisions (Sitzia et al., 2016).

Remote Sensing (RS) data and techniques can not only allow cov-
erage of large areas repetitively, but also provide data for areas difficult
or dangerous to reach, such as the tiger reserve described in (Niphadkar
et al., 2017). Thus, they represent an efficient add-on or even an al-
ternative to in-field inspections (Nagendra et al., 2013; Peerbhay et al.,
2016).

RS data have already been used in alien plant detection. An inter-
esting review on the subject is provided by Bradley (2014). In Table 1,
we provide an overview of the most recent applications along with the
classification methods, the specific satellite and/or airborne data,
namely hyperspectral or multispectral, and the results obtained, i.e.
Overall Accuracy (OA) or User’s Accuracy (UA), for each invasive
species investigated. Most of the papers listed in this Table adopted and
evaluated different supervised techniques, however, in the last column,
only the best result of each study is reported for comparative reasons.
The supervised classifiers employed by the different authors include the
well-known Maximum Likelihood (ML) (Ustin et al., 2002; Niphadkar
et al., 2017; De Sa’ et al., 2017; Miillerova et al., 2017a; 2017b), the
Support Vector Machine (SVM) (Gavier-Pizarro et al., 2012; Mirik et al.,
2013; Atkinson et al., 2014), the Random Forests (RF) (Monteiro et al.,
2017; Ng et al., 2017; Grofe-Stoltenbeg et al., 2018), the Mixture
Tuned Matched Filter (MTMF) (Glenn et al., 2005; Andrew and Ustin,
2008; Da Luz and Crowley, 2010) and the Spectral Angle Mapper (SAM)
(Ustin et al., 2002; Pengra et al., 2007).

Even though A. dltissima has been recognized as one of the most
wide spread and harmful invasive plants in both the USA (Burkholder
et al., 2011) and Europe (www.europe-aliens.org), only two of the
papers reported in Table 1 have focussed on the mapping of this species
(Da Luz and Crowley, 2010; Dvorak et al., 2015) using either hyper-
spectral (HS) aerial or multi-spectral (MS) UAV data.

In the Mediterranean basin A. altissima is spreading rapidly due to
both the dramatic climatic change taking place in this region and the
consequent land abandonment (Bardsley and Edwards-Jones, 2007).
Reportedly, this species can invade fallow land and endanger ecosys-
tems more rapidly than any of the native species (Walker et al., 2017).
Therefore, the detection of this plant would require more extensive
remote sensing studies.

In light of this need, the present study has two main objectives: the
first aims at verifying the effectiveness of multi-spectral and multi-
temporal Very High Resolution (VHR) satellite data (i.e., WV-2) in the
mapping of A. altissima in the Mediterranean area. The second objective
is to verify the effectiveness of a two-stage hybrid classification scheme
in the plant investigation approach. The first classification stage uses a
knowledge-driven learning procedure, which can provide a multiple
class Land Cover (LC) map without requiring in-field reference data
(Adamo et al., 2015; Lucas at al., 2015). The deciduous layer extracted
from this LC map will be used as a pre-filter for the input data to the
second classification stage. The latter is a supervised data-driven clas-
sifier which can discriminate two classes (i.e., A. altissima and other
deciduous) by analysing only the pixels belonging to the deciduous
vegetation layer of the LC map obtained in the first stage.

The two-stage approach proposed is novel and useful since it can
reduce not only classification complexity, but also time and costs in-
volved by in-situ reference data collection.

The study area is located in the “Murgia Alta”, a protected site in
Southern Italy which belongs to the European Natura 2000 network,
i.e., a coordinated network of core breeding and resting sites for rare
and threatened species, and some rare natural habitat types which are
protected (http://ec.europa.eu/environment/nature/natura2000/
index_en.htm).

Besides providing a comprehensive contribution to an early-on and
cost-effective detection and management of the globally important in-
vader A. altissima, the present study will try to determine the best
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season (s) to carry out identification and mapping in the “Murgia Alta”.
2. Materials and methods
2.1. Alien species studied

Ailanthus altissima, also known as tree-of-haven or Chinese sumac, is
an invasive deciduous plant of Asian origin belonging to the
Simaroubaceae family. The invasive plant can yield up to more than 1
Mio seeds annually in adulthood (Wickert et al., 2017). The tree is
endowed with an exceptionally wide window of seed production which
can last over 100 years. The invasive capacity of A. altissima includes its
ability to reproduce equally well both by seed and asexually (Kowarik,
1995; Richardson et al., 2000). The plant winged seeds can be dispersed
by wind, water and machinery, while its vigorous root system can
generate numerous suckers and progeny plants (Planchuelo et al.,
2016).

Ailanthus altissima saplings grow very quickly with considerable
vigor, reaching meters of height in a short time. Moreover, the species
can adapt to different type of soil and water regime (Kowarik & Saumel,
2007), thus, it can easily reach almost any area and cause severe eco-
logical damage (Casella & Vurro, 2013). At present, A. altissima is re-
ported as one of the most important causes of local and regional bio-
diversity loss (Chornesky & Randall, 2003). The alien plant can cause
ecosystem degradation, diminishing both abundance and survival of
native species (Casella et al., 2015a, 2016).

As a consequence, A. altissima is considered to be a threatening in-
vasive alien species in both Europe (www.europe-aliens.org) and North
America (Burkholder et al., 2011). In Italy, the species has spread
through all the southern regions (Celesti-Grapow et al., 2010).

2.2. Site description

The study area covers 500 km? located in the “Murgia Alta” Natura
2000 protected area, within the Apulia region, Southern Italy (Fig. 1a).
The altitude of the area is around 700 m above the sea level and its
climate is typically the one of the sub-Mediterranean basin (Mairota
et al., 2013).

According to the list of habitats reported in Annex 1 (Appendix A)
attached to the European Habitat Directive (Council Directive 92/43/
EEC), the most important habitat types in this area include semi-natural
and natural dry grasslands and scrubland facies on calcareous substrates,
important orchid sites coded as 6210" and 6220 and pseudo-steppe with
grasses and annuals (the symbol " indicates priority habitat types in
Annex I to the European Habitat Directive; specifically, 6210" is an
endemic habitat in Murgia Alta). The “Murgia Alta” represents one of
the most important areas for the conservation of these types of eco-
systems in Europe and it is also considered a haven for the conservation
of birds, wildlife and priority species (Birds Directive, Council Directive
2009/147/EEQC).

These unique ecosystems are under pressure and in danger of de-
struction due to agricultural intensification, urbanization, arson and
land abandonment. Climatic changes and A. altissima invasion are also
contributing to further degradation and pressure in the area (Mairota
et al.,, 2013, 2015). In the Murgia Alta area the invader can grow
mainly: (a) in semi-natural and natural grasslands fields due to shep-
herds practices abandonment; (b) at the edges of cultivated fields,
mainly herbaceous areas. Within such fields, the invader is generally
controlled by the farmers through regular ploughing or other agri-
cultural practices.

Occasional fires occurring in this area can also be favoured by the
proliferation of this plant (Crandall & Knight, 2018).

2.3. Data availability

Ailanthus altissima mapping was carried out by means of four, cloud-
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Fig. 1. “Murgia Alta” Natura 2000 site. (a) Location and extension of “Murgia Alta” protected area in red line. The 500 km? analyzed area in blue line. (b) WV-2 input
image, 2 m resolution, October 5th, 2011. (c) WV-2 input image, 2 m resolution July 6th, 2012. False Colour Composite: Band 5, Band 7, Band 2.

free, multi-seasonal WV-2 images. WV-2 is a VHR satellite that can
acquire data within the 0.4-1.40 um spectral range of eight bands
having spatial resolution of two meters and swath width of 16.4 km.
The eight spectral bands of WV-2 include four standard bands situated
in the BLUE (0.450-0.510 um), GREEN (0.510-0.580 um), RED
(0.630-0.690 pm) and NIR1 (0.770-0.895um) and additional four
bands which are COASTAL (0.400-0.450 um), YELLOW
(0.585-0.625um), RED EDGE (0.705-0.745um) and NIR-2
(0.860-1.400 pm).

In the present study, all the WV-2 spectral bands of the multi-tem-
poral data set were considered following the techniques adopted by
Omer et al. (2015). In their investigation of endangered tree species,
Omer et al. (2015) reported that, by using the full set of WV-2 spectral
bands, they obtained better results than when using only 4 bands, either
standard or additional bands.

The images analysed were provided by the European Space Agency
(ESA) under the Data Warehouse 2011-2014 policy within the FP7-
SPACE BIO_SOS project (www.biosos.eu). They were acquired on May
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19th, 2011, October 5th, 2011 (Fig. 1b), January 22nd, 2012 and July
6th, 2012 (Fig. 1c). At the pre-processing stage, the images were co-
registered with each other and calibrated to top of atmosphere (TOA)
reflectance values.

For the training of the second-classification stage and for validation
of the final output map, the reference data were collected during a
European Life project (LIFE12 BIO/IT/000213) carried out to eradicate
A. dltissima invasive species (Casella et al., 2015a; Casella et al., 2015b;
Casella et al., 2016).

2.4. Methodology

The classification system used consisted of a two-stage hybrid
scheme. The first stage can provide an LC map from multi-seasonal VHR
imagery without training reference data. The LC map can be used as a
pre-filter to extract the deciduous vegetation layer to which the A. al-
tissima species belongs. In the second stage, the invader pixels were
distinguished from those belonging to other deciduous vegetation by
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means of a data-driven classifier.

Specifically, the first stage of the classification system was based on
an object-based (Ma et al., 2017), knowledge-driven LC classification
algorithm within the eCognition framework (Trimble, 2014). The al-
gorithm was developed in a previous study (Adamo et al., 2015; Lucas
et al., 2015). It is based on multi-class discrimination using spectral and
context rules provided through the elicitation of prior expert knowledge
about: agricultural practices, class phenology, spectral and spatial fea-
tures. The input to the first stage were the multi-seasonal WV-2 images
available corresponding to: the biomass pre-peak (January); the bio-
mass peak (May); the dry season (July); the biomass post-peak (Oc-
tober).

One of the critical steps of object-based classification is the selection
of an appropriate segmentation scale for the identification of homo-
geneous objects in the image by means of a segmentation procedure. In
order to provide classification outputs with different levels of detail,
two different segmentation scales were used thus obtaining Small
Object (SO) and Large Object (LO) segmentations (Lucas et al., 2015).

Using the biomass post-peak (October) image (R-G-B-NIR1 bands),
the SO segmentation aggregated pixels into objects by considering
spectral similarity only. The output segments, belonging to the small
landscape components, appeared to be characterized by a small ex-
tension (e.g., tree crown scale). By using scale and shape indices (e.g.,
smoothness and compactness) along with spectral (R-G-B-NIR1bands)
and texture homogeneity (1st order entropy) rules, LO segmentation
provided large image segments (field scale). The resulting output seg-
ments represent macro structure and aggregations of the landscape.
Thus, for A. altissima detection, the LO scale segmentation was not
considered. Instead, the SO segmentation output map was used by ap-
plying expert rules for the subsequent classification phase. Thus, the
multiple scale analysis can provide the selection of products more
adequate for specific applications responding to different purposes.

The resulting Land Cover classified map (at the SO scale) was then
used as input to the second classification stage of the hybrid system.

It is worth noting that no training data were needed to produce the
output LC map by the hybrid system first stage. The classifier employed
the same hierarchical scheme and taxonomy as the one adopted by the
Food and Agriculture Organization Land Cover Classification System
(FAO-LCCS) (Di Gregorio et al., 2005). The FAO-LCCS taxonomy pro-
vides a framework which, by integrating additional ancillary data, can
be used to translate any LC class into different habitats (Tomaselli et al.,
2013; Adamo et al., 2014; Lucas et al., 2015; Adamo et al., 2016;
Gavish et al., 2018).

The natural deciduous vegetation layer to which A. altissima belongs
was extracted from the LC map obtained as output of the first stage and
this layer was used for the masking of the images to be analysed in the
second stage. Initially, based on prior-knowledge, only the pixels of the
natural deciduous class from the first stage were considered as input to
the second stage. Then, based on misclassifications occurring between
natural broadleaved deciduous vegetation and cultivated broadleaved
vegetation evidenced by the PA values in the first-stage classification
confusion matrix, the cultivated deciduous pixels were added into the
deciduous vegetation layer considered as input to the second stage. The
selection of the pixels belonging to the deciduous layer may have had
an impact on the final classification map. In Murgia Alta, the broad-
leaved deciduous class is composed of both natural trees and shrubs
vegetation and cultivated broadleaved vegetation (which consists
mainly of orchard trees and vineyard shrubs).

The second stage of the algorithm was based on the well-known ML,
a pixel-oriented, data-driven classifier which requires little input
parameter tuning, has low computational costs and is easily accessible
to any end-user. In consideration of its advantages, ML was adopted to
rapidly assess how effective the use of a pre-filtering LC map could be
for the production of accurate invasive species maps.

Fig. 2 schematises the hybrid two-stage classification algorithm
adopted.
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For training the supervised ML classifier, 5368 reference pixels were
used to detect only two vegetation classes, namely A. altissima and other
deciduous plants. Among the training reference pixels considered, 272
belonged to A. altissima and 5096 to other deciduous vegetation. An
additional set of 8902 reference pixels was then selected from the in-
situ data to validate the output map. Among these pixels, 845 belonged
to A. altissina whereas 8057 belonged to other deciduous plants.
Stratified random sampling was then applied to obtain a sample po-
pulation that could best represent the entire population under study.
Through this sampling technique, it was ensured that segments of the
population were neither overrepresented, nor underrepresented
(Congalton and Kass, 2009).

Moreover, in order to identify the minimum set of seasons to be
analysed for A. altissima discrimination, different input configurations
to the classifiers (reported in Section 3, Table 2, column 2) were con-
sidered by relying on prior-knowledge of species phenology.

Once the best configuration was found, first, the full set of the
images spectral bands were used. Then, three spectral indices, generally
used as a proxy of many vegetation related variables, were analysed to
evaluate the results obtained with a reduced number of features.

It is worth noting that the spectral indices analysed do not cover the
whole spectral range of the full band set (Section 2.3). The choice of not
investigating further spectral indices may have had an impact on the
classification performance. However, we think that it can be useful to
quantify how low the system performance can get when less spectral
regions are used.

The indices investigated in this study include the well-known
Normalized Difference Vegetation Index (NDVI):

NDVI = NIR1 — RED
NIR1 + RED (€]
the Green Normalized Difference Vegetation Index (GNDVI):
GNDVI = NIR1 — GREEN
NIR1 + GREEN 2

and the Modified Soil Adjusted Vegetation Index (MSAVI):

_ 2sNIR1 + 1 — \J((@#NIR1 + 1)>~8x(NIR1 — RED))
B 2 3

Specifically, the GNDVI is mostly used to determine water and nitrogen
plant uptake into the crop canopy (Gitelson et al., 1996), whereas the
MSAVI can maximize the reduction of soil effects on the vegetation
signature. Soil effect reduction may be important when analysing VHR
imagery (Qi et al., 1994).

The chosen spectral indices comparison can be justified considering
on the one hand that end-users, not well acquainted with satellite data
analysis and feature extraction, generally employ few indices (e.g.
NDVD); on the other, that usually, data from VHR sensors, such as those
from drones, include only BLUE, GREEN, RED and NIR bands. This
comparison can provide a costs/benefits analysis. The two-stage clas-
sification hybrid system was applied to produce a reliable A. altissima
map and to identify both small and larger areas invaded by this species
(Section 3).

To improve the overall accuracy classification value obtained by the
ML classifier, first a convolution median low-pass filter was applied to
the output map. Then, the ML was substituted with an SVM classifier.
The substitution was motivated by the fact that, even with small
training samples, the SVM can yield better generalization performances
even though requiring more computational effort and tuning of input
training parameters than the ML classifier (Horvath, 2003; Foodya nd
Mathur, 2004; Bruzzone and Persello, 2009; Mountrakis et al., 2011;
Zheng et al., 2015; Belgiu and Dragut, 2016). Both a polynomial and an
RBF kernel function were tested and compared. For comparison pur-
poses with ML, the convolution median filter was applied also to the
output of the SVM classifier.

All the different settings which were investigated can be justified by

MSAVI



C. Tarantino et al.

First Stage

<—

Knowledge-Driven classifier

v

Classified Land Cover map

v

Deciduous vegetation layer
from Classified Land Cover map

| Second Stage

ISPRS Journal of Photogrammetry and Remote Sensing 147 (2019) 90-103

May 2011 WorldView-2 image

Oct 2011 WorldView-2 image

July 2012 WorldView-2 image

January 2012 WorldView-2 image

!

Masking for the pixels of deciduous layer

Training ground
truth data

Data-Driven classifier

Ailanthus altissima cover map

|

Fig. 2. Two-stage classification algorithm. Red rectangle, object-oriented, knowledge-driven first classification stage; black rectangle, pixel-oriented, data-driven
second classification stage. Maximum Likelihood and Support Vector Machines classifiers were considered and their results compared in the second stage.

considering that the LC map of the first stage had been already opti-
mized: (a) within the knowledge based approach of our work or, (b) by
the map providers when considering an existing map (e.g., the ones
produced through in-field campaigns by the protected area manage-
ment authorities). Thus, an improvement of the final invasion map
could be obtained by improving only the second classification stage.
The ENvironment for Visualizing Images (ENVI) framework, version
5.4, was adopted to perform all the classifications in the second stage
(Harris Geospatial Solution). ENVI allows to, either easily select default
input configuration parameters, or change them according to specific
requirements, thus it can support even non-specialized users.

2.5. Accuracy assessment

The accuracy assessment protocol described in Olofsson et al. (2013;
2014) and Tarantino et al. (2016) was adopted in the second stage of
the system. This protocol uses the information obtained from the tra-
ditional map confusion matrix (Congalton and Kass, 2009) to estimate
the area of each LC class and to construct confidence intervals that
reflect the uncertainty of the estimates obtained. In this framework, the
sample error matrix is reported in terms of: (a) the unbiased stratified
estimator of the proportion of area (ﬁj) in each cell i,j of the matrix; (b)
OA, both UA and Producer’s Accuracy (PA), with standard errors esti-
mates (Section 4.3 in Olofsson et al., 2014). When map categories are
reported as rows (i) and the reference categories are shown as columns
(), Aw: represents the total area of the map (window), A, ; is the

mapped area (ha) of category i in the map and W, = A'["'[" is the pro-

portion of the mapped area as category i, ﬁlj is then:

95

= W —
plj ll’ll‘,

@

where n; corresponds to sample counts. The unbiased stratified esti-
mator of the area of category j can be obtained as:

~ N n
Aj = At XD = Arr Z W —
K ! oo (5)
where A; can be viewed as an “error-adjusted” estimator of area be-
cause it includes the area of omission error of category j and leaves out
the area of commission error.
The estimated standard error of the estimated proportion of area is:

(6)

Finally, the standard error of the stratified area estimate can be ex-
pressed as:

S(A\j)=Amt XS(I/?}) (@)
and an approximate 95% confidence interval for A4; is:
A £2xS@A) ®

2.6. Mc Nemar’s test

Besides the aforementioned accuracy assessments, the significance
of the performance discrepancies between pairs of classifiers adopted in
the second classification stage (Bostanci and Erkan Bostanci, 2013) was
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Fig. 3. Two sub-sets of the Land Cover map obtained by the knowledge driven classifier used in the first stage of the whole classification system (Fig. 2). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

assessed using Mc Nemar’s test. The latter is a variant of x? test which
consists of a non-parametric analysis by matching pairs of data from
two algorithms. This matching produces four possible outcomes which
can be arranged in a 2 X 2 contingency table. The performance dis-
crepancies between the two algorithms can be evaluated on the basis of
a z score, which is a function of the number of times one algorithm
failed and the other succeeded. When z = 0, the two algorithms can be
considered as providing similar performance. When the z value diverges
from O in positive direction, it can be inferred that the performance of
the two algorithms differs significantly.

3. Results

The hybrid system proposed in the present paper was applied to
investigate the usefulness of multi-temporal VHR imagery in the de-
tection of A. altissima invasive species, in Murgia Alta. Fig. 3 shows the
LC map obtained as output of the system first-stage by analysing the 4
input multi-seasonal images available. This map includes 14 LC classes
(Appendix A). As reported in the previous Section, only expert prior-
knowledge was used to train the first-stage classifier (Adamo et al.,
2015). In-situ reference data were instead used only to validate the
output LC map with a resulting OA value of 92.77 = 0.04%.

For the LC natural vegetation woody broadleaved, trees or shrubs,
deciduous (A12/A1.A3 or A4.D1.E2) class, the UA and PA values ob-
tained were 69.30% and 89.48%, respectively. The PA value (89.48%)
derives from the fact that 7% of available reference natural deciduous
pixels were misclassified as cultivated shrubs broadleaved deciduous
class (A11/A2.A7.A10). In Murgia Alta, all the reference pixels of such
class belong to vineyards. In addition, 3% of natural deciduous pixels
were misclassified as cultivated trees or shrubs broadleaved deciduous
(class A11/A1 or A2.A7.A10) belonging to fruit trees or shrubs in the
area. Such low percentage values of misclassifications obtained along
with prior-knowledge about species spreading (Section 2.2) support the
choice of the natural deciduous layer only as input to the second clas-
sification stage for detecting A. altissima species. Nevertheless, once the
best second stage setting was identified, the cultivated trees or shrubs
deciduous pixels were included in the input deciduous layer to the
second classification stage.

The UA value obtained (69.30%), indicates that 18%, 7% and 2% of
the reference pixels from natural trees broadleaved evergreen,
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cultivated broadleaved shrubs (vineyards) as well as deciduous trees
(orchard) classes, respectively, were misclassified as natural broad-
leaved deciduous. The findings show that an overestimation of the
natural broadleaved evergreen pixels occurred in the LC map of the first
classification stage.

In the LC map (Fig. 3), the natural broadleaved deciduous vegeta-
tion layer (A12/A1.A3 or A4.D1.E2) appears to be highly inter-
connected with the natural grassland ecosystem (i.e. herbaceous gra-
minoids class, A12/A2.A6), whereas the cultivated broadleaved (trees
and shrubs) deciduous vegetation (in the upper right corner of the
image characterized by low digital elevation values) results to be well
separated from natural grasslands.

Table 2 reports the results of the A. altissima mapping obtained from
different second-stage input configurations. Each configuration is la-
belled with a different identifier (ID 1-11). ID 1 and ID 2 report the
results obtained using all the spectral bands of the spring (May) and the
summer (July) images which were analysed one image at the time. The
OA and A. altissima UA values obtained for July (80.59 * 0.34% and
37.32 = 1.10%) were larger than the ones obtained for May
(68.57 = 0.31% and 22.64 = 0.74%), respectively. Nonetheless, the
July values can still be considered rather low, thus requiring the in-
tegration of additional data. For this purpose, image pairs from July—
January (ID 3), July-May (ID 4) and July-October (ID 5) were ana-
lysed.

When using the July-January image pair, better OA
(84.76 = 0.39%) and UA (50.93 =+ 1.26%) values were obtained (ID
3). From Table 2, it can be observed that the July-May image pair (ID 4)
provided OA and UA values smaller than the ones reported in IDs 2 and
3, respectively. When the multi-spectral stack of the July-October pair
was analysed, the identification of A. altissima pixels improved sig-
nificantly, with an increase of both OA (90.51 = 0.27%) and UA
(55.05 *+ 1.29%) values (ID 5).

Although the application of a filtering procedure may remove not
only noisy and false positive pixels, but also some pixels belonging to
isolated A. altissima plants, a median filter was adopted to improve the
final UA an OA values (Haralick et al., 1987). This choice increased the
OA and UA values up to 99.20 += 0.07% and 79.15 * 1.61%, re-
spectively, for a 5x5 window size. As expected, the A. altissima mapped
area (A,,) value and the stratified area estimate, with 95% confidence
interval, were not only the smallest values (ID 5), but also resulted quite
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Table 2

Results obtained from 2nd stage different input configurations. Each configuration is labelled with a specific Identifier (ID) in the table. UA, PA as well as OA values (%) are provided with standard errors (Olofsson et al.,

2014).

Error matrix: A. altissima vs. Other Deciduous Vegetation

Am (ha) Mapped Area Stratified A. altissima Area Estimate

A. dltissima

O0A%

Classifier A. altissima UA A. altissima PA Other UA Other PA

Input configuration to the 2° stage

ID

95% Conf. Interv. (ha)

135.85 + 8.34

527.56

+ 0.19 66.40 + 0.39 68.57 = 0.31

98.01

87.93 + 0.98

22.64 = 0.74

ML

May
July

1
2
3
4
5

162.82 * 9.11

391.63

80.59 * 0.34

98.26 + 0.16 79.33 + 0.32
99.36 + 0.09 82.44 + 0.28
98.97 * 0.13 71.74 += 0.35
99.64 + 0.07 89.60 + 0.28

99.60 + 0.07 97.15 = 0.21

89.76 * 1.11

37.32 £ 1.10

ML

213.31 = 10.43
163.79 + 9.43

84.76 + 0.39 407.01

74.51 + 0.35

97.17 + 0.75
94.61

50.93 * 1.26

ML

July and January
July and May

490.39

+ 0.82

31.60 = 0.94
55.05 + 1.29

ML

196.19 * 9.16

90.51 *+ 0.27 347.48

96.95 + 0.14

97.49 = 0.58

ML

July and October

77.37 £ 3.55

106.27
30.08

94.03 + 0.74

68.46 + 1.48

after filtering: 3 x 3

27.12 = 1.70

99.72 + 0.06 99.46 + 0.14 99.20 * 0.07

87.80 + 0.81

79.15 + 1.61

5x5

230.04 + 10.84

85.26 + 0.40 424.16
81.20 * 0.30 267.97

86.48 + 0.26

99.73 + 0.06 82.45 + 0.27
94.66 + 0.27 83.93 + 0.28

9496 + 0.26 90.19 + 0.32

98.91 + 0.50

53.64 + 1.27

ML

July, January, May, October

NDVI: July and October

6
7
8
9

129.55 * 8.10

55.40 = 1.53

26.78 = 1.07

ML

99.84 + 7.00

162.73

40.08 = 1.61

24.59 + 0.99

ML

GNDVI: July and October

98.34 + 6.39

101.71

92.22 + 0.24

95.93 + 0.22 95.67 * 0.23

48.27 + 1.45

46.67 + 1.53

ML

MSAVI: July and October

82.95 + 5.57

55.00

96.53 + 0.20 98.66 + 0.15 95.41 + 0.21

45.81 + 1.26

69.08 + 1.66

SVM (RBF)
SVM (RBF)

10 July

53.22 * 3.77
56.56 + 5.57

97.96 = 0.14 39.46
98.26 = 0.21

98.42 = 0.14 99.47 = 0.14

98.77 + 0.21

61.16 = 0.99

82.47 + 1.32

July and October

11

99.97 + 0.05 6.79

11.39 = 0.60
3.84 = 0.10

94.85 + 0.93

after filtering: 3 x 3

78.49 * 6.70

3.01

100.00 = 0.01 99.41 = 0.25

99.40 + 0.25

97.47 + 0.01

5%X5
SVM (Polynomial;

degree: 2)

53.25 + 3.83

39.00

97.91 * 0.14

98.38 + 0.14 99.46 + 0.14

60.16 + 0.99

82.13 + 1.33

12 July and October

70.89 * 4.24

98.04 = 0.15 99.26 + 0.13 97.42 = 0.16 55.00

64.22 + 1.05

82.77 + 1.31

SVM (RBF)

13 July and October. Input layer includes natural

and cultivated broadleaved deciduous
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similar after filtering (5 x 5).

When the four-seasonal spectral stack was used as input to the
second stage (ID 6), the UA and OA values (53.64 + 1.27% and
85.26 + 0.40%, respectively) resulted lower than the ones obtained
from the July-October image pair (55.05 = 1.29% and
90.51 *= 0.27%, respectively).

In order to test final classification accuracy with LC map and
without LC map, the two-classes (A. altissima and other deciduous ve-
getation) available ground truth information was used to train a single
stage supervised ML classifier. When using the four WV-2 images
available, the results obtained by a single stage supervised ML classifier,
without pre-filtering, evidenced a decrease in the UA and OA values
(53.50 = 1.27% and 55.54 + 1.21%, respectively) and a very large A.
altissima mapped area (47259.84 ha). Instead, when using the July-
October image pair only, the UA and OA values were slightly larger
than the previous ones (55.68 * 1.30% and 64.07 * 1.05%, respec-
tively) with a lower A. altissima mapped area (39966.40 ha). Such high
values for the A. altissima mapped area value, with respect to the cor-
responding (not filtered) two-stage A. altissima mapped area results
(424.16 ha, ID6), indicates that most of the image pixels were mis-
classified as A. altissima. These findings confirm the usefulness of the
two-stage approach.

In a further ML classification experiment, only vegetation spectral
indices from the bi-temporal (July-October) data set were used as input.
When the NDVI index from the July-October image pair was used as
input to the second stage, no improvement of the OA was noticed (ID
7). The OA value (81.20 = 0.30%) remained lower respect to the bi-
temporal stack (ID5), while the UA resulted very low (26.78 + 1.07%).

For comparison purposes, two additional vegetation indices, i.e., the
GNDVI (ID 8) and MSAVI (ID 9), were applied to the same image-pair.
Among the indices investigated, the results reported in IDs 8 and 9
indicate that MSAVI provided the largest OA (92.22 * 0.24%) value,
but a lower UA (46.67 * 1.53%) with respect to the bi-temporal stack
(ID 5).

Table 3 shows the results obtained by applying McNemar’s test to
pairs of classifiers which correspond to different algorithms or input
configurations. This step was intended to assess the statistical sig-
nificance of the different OA values obtained.

Figs. 4-6 show four close-up images extracted from the final output
map obtained from the July-October image pair. These images provide
samples of the detection of true invasive pixels.

Fig. 7a—c, represent close-up of the final output map obtained from
three different second-stage input configurations, namely July-January
(ID 3), July-May (ID 4) and the whole multi-seasonal data set (ID 6),
respectively. In these maps, A. altissima pixels, shown in the red
polygon areas, were proved false by in-field validation campaigns. The
pixels in questions were not detected in the July—October output map,
Fig. 7d. This result appears to be in agreement with the well-known fact
that A. altissima species can hardly grow in dense woodland areas as the
ones surrounding the zone investigated (Fig. 7e).

Drawing on the aforementioned results, the July image (ID 10) and
the bi-temporal July-October image pair (ID 11 and ID 12) were used
separately as input to the SVM classifier. In the second stage the SVM
substituted the ML classifier for performance comparison.

When the Radial Basis Function (RBF) with the SVM default para-
meters i.e., penalty C = 100 and kernel function y = 0.063, proposed
by ENVI tool, were used for the single-date image, SVM analysis (ID 10)
provided larger OA and UA values (95.41 *+ 0.21% and
69.08 = 1.66%) than the ones obtained through ML (80.59 =+ 0.43%
and 37.32 = 1.10%, respectively). For the July—October image pair,
the OA (97.96 + 0.14%) obtained was quite comparable with the one
from the ML (99.20 + 0.07%) following the application of a 5 X 5
filter. For tuning the SVM configuration parameters, various C and y
pairs were tested, but no significant changes in the classification results
were achieved. Similar OA and UA values (97.91 + 0.14% and
82.13 + 1.33%) were obtained when the polynomial SVM kernel
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Table 3

Results obtained by applying Mc Nemar’s test to selected pairs of classifiers used in the second stage (Table3a). The arrowheads (<, 1) denote which classifier performed better in the given datasets. Z

scores are given next to the arrowheads as a measure of how statistically significant the performances of the compared classifiers are. The contingency tables obtained for the classifier pair SVM and ML
before and after filtering (5 x 5), using 2 seasons as input to both classifiers, are reported in Table 3b and Table 3c. In such Tables, A and OD labels indicate A. altissima and Other Deciduous pixels,

respectively, as components of the total number of failed or succeeded pixels reported in the Tables.

ML input: MSAVI

ML input: 4 seasons

ML input: 2 seasons after filtering (5 X 5)

ML input: 2 seasons

@)

ML input: 2 seasons
ML input: NDVI

<1.84

17.36

116.4

SVM input: 2 seasons

<7.11

<14.43

Z = 14.43

ML

(b)

Succeeded

Failed

135
(131 A + 40D)

169

(27 A + 142 OD)

Failed

SVM

8072
(687 A + 7385 OD)

526
(0 A + 526 OD)

Succeeded

Z=7.11

ML5 x 5

(O]

Succeeded

Failed

282
(87 A + 195 OD)

109

(71 A + 380D)

Failed

SVM

8234
(418 A + 7816 OD)

633
(269 A + 364 OD)

Succeeded
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function was used (ID 12).

The application of the median filter (5 X 5 size) to the SVM clas-
sifier improved the UA and OA values up to 97.47 *= 0.01% and
OA = 99.41 = 0.25%. However, as expected, this filter application
drastically reduced the PA to 3.84 = 0.10%, with loss of most of the
reference pixels.

When cultivated broadleaved deciduous pixels were added to the
natural deciduous pixels, as input of the SVM classifier, the UA and OA
values did not change with respect to the one obtained by the natural
deciduous pixels alone. Only a slight increase in the PA (from
61.16 = 0.99% to 64.22 + 1.05%) was obtained.

Fig. 8a and b report the results of the ML and SVM classifications in
one window of the output image. In particular, Fig. 8a shows a decid-
uous oak tree which was classified as A. altissima by the ML, whereas
the plant was correctly recognized as other deciduous plant by the SVM.

4. Discussion

The findings reported in the present study encourage the use of both
VHR imagery and the hybrid classification approach proposed for A.
altissima invasive species mapping. The results presented in Table 3,
related to Mc Nemar’s statistical test, evidence the statistical sig-
nificance of the performance differences resulting from the configura-
tion pairs investigated.

4.1. Best season and filtering evaluation

The mapping carried out with single-date WV-2 imagery reveals
that the image acquired in July can discriminate A. altissima plants
better than the image acquired in May (Table 2). This finding is con-
sistent with the results reported by Burkholder et al. (2011) who ob-
tained the lowest error in the July spectra. However, it seems worth
noting that, Burkholder et al. (2011) investigated laboratory spectra of
A. daltissima leaves collected from May to August in a site in West Vir-
ginia, whereas our study concerned satellite WV-2 data classification of
A. daltissima in Murgia Alta, a site in the Mediterranean basin.

Our results indicate that, when only the July image was used as
input to the second-stage classification, the UA, PA and OA values ob-
tained by the ML classifier were lower than when using bi-seasonal
images. Actually, the best results (UA = 55.05 + 1.29%;
PA = 97.49 + 0.58% and OA = 90.51 *+ 0.27%) were achieved when
the October (autumn) image was added to the July one and the whole
bi-temporal WV-2 spectral stack was analysed (Table 2). This finding
could be related to the A. altissima phenology, which differs from other
deciduous plants growing in Murgia Alta.

In this site, the A. altissima leaves start to turn yellow at the end of
September and, depending on temperature, they can be completely lost
by the end of October. Other trees, such as wild pear and oak trees (i.e.,
Quercus pubescens) distributed on the area, exhibit delayed time in their
phenology (Casella et al., 2016). This characteristic may have influ-
enced the results of our study.

By employing a low-pass median filtering, the UA and OA values
obtained by the ML from July-October stack increased up to
79.15 = 1.61% and 99.20 + 0.07%, respectively (Table 2). However,
the PA decreased from 97.49 = 0.58% to 87.80 * 0.81% as a con-
sequence of true pixels loss due to filtering. When the Mc Nemar’s test
was applied to the ML classifier before and after filtering (5 X 5 size),
the significance of the filter performance was evidenced (z = 7.36). The
filter reduced the overestimation of A. altissima pixels (Table 3). The ML
classification involved low parameter complexity and low computa-
tional costs, but it lost true A. altissima pixels.

As evidenced by the low value obtained by Mc Nemar’s test
(z = 1.84), the use of full four-seasonal spectral stack introduced no
significant improvement in the classification performance than when
using the bi-temporal stack. This finding suggests that, when an LC map
is already available and there is no need to run the first classification
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" Fig. 4. Close-up 1: (a) WV-2 July and (b)

+ WV-2 January images, False Colour

Composite: Band 5, Band 7, Band 2.

Deciduous plants can be observed. (c) A.

‘ altissima (5 x 5) filtered ML output map

from second stage using the July—October

image pair as input. In-field polygons of A.

altissima, used for validation, are high-
lighted in magenta line.

stage, only two VHR images, one of summer and the other of autumn,
need to be collected for A. altissima mapping.

4.2. Feature reduction

The last ML classification experiment was carried out by using only
NDVI, GNDVI and MSAVI vegetation indices which were extracted from
the July-October bi-temporal stack. The results show that among the
vegetation indices used, MSAVI can provide the highest UA and OA
values, i.e., 46.67 = 1.53% and 92.22 *= 0.24%, respectively
(Table 2). This finding was also confirmed when using the Mc Nemar’s
test (z = 16.4) to compare MSAVI and NDVI results (Table 3). The data
obtained confirm the importance of reducing the impact of soil sig-
nature when analysing VHR data (i.e., WV-2) through the MSAVI.

When using MSAVI, however, lower UA and PA accuracy values
were obtained, from the same input July-October image pair, respect to
the whole bi-temporal band stack. This result may have been due to the
fact that the indices considered related only to some spectral bands (i.e.,
RED, GREEN, NIR1). Undoubtedly, wider selection of vegetation in-
dices would have been required in order to optimize computational
costs and performances. However, since the main objective of this study
is to evaluate the effectiveness of multi-spectral VHR imagery for A.
altissima mapping, both investigation and comparison of additional
spectral indices remain remote to the scope of our study.

The foregoing discussion leads to the suggestion that the use of the
whole spectral information available from multi-spectral satellite ima-
gery can support end-users to solve vegetation related issues adequately
when a dedicated index selection cannot be carried out. Our observa-
tion, about the need to use the whole band set available for A. altissima
mapping, is in consonance with Tarantino et al. (2012) and Omer et al.
(2015), even though these studies used no index and based their con-
clusions on the analysis of the different spectral bands of one image
only.

Other studies, which focuse on hyperspectral data, have analysed in
depth the selection of spectral indices. For instance, Grofe-Stoltenbeg
et al. (2016) and (2018) have provided interesting details on the dis-
tribution of Acacia longifolia species in a Mediterranean dune ecosystem
region. In the 2016 paper, the authors used field spectra data while in

the 2018 one, they employed aerial hyperspectral imagery combined
with LIDAR data.

In the 2018 paper, the authors reduced the spectral features by se-
lecting 15 vegetation indices covering the full spectral range of the data
considered. They reported the best result when fusing such vegetation
indices with LIDAR data. In addition, they validated the effectiveness of
a new index, namely the Near Infrared Vegetation Index, which can be
related to the Gross Primary Production and seems able to evaluate the
impacts of invasive species on ecosystem productivity (Grofe-
Stoltenbeg et al., 2018).

4.3. Second stage: classifiers comparison

In the present study, the best results for both the single July image
and the July-October image pair were achieved when the SVM classifier
was adopted in the second stage. For the image pair, the significance of
the performance difference between the SVM and ML (without filtering)
classifiers, was confirmed by the high value of the Mc Nemar’s test
(z = 14.43) reported in Table 3a. In light of the comparison between
SVM and ML (before and after filtering) when using 2 seasons as input,
for both classifiers, the data reported in Table 3b and 3c present the
number of times when: either (1) both algorithms failed (left-top) or (2)
succeeded (right, bottom); or else (3) one of the algorithm failed and
the other succeeded (right-top and left-bottom) considering the com-
parison of SVM and ML. Actually, most of A. altissima false positive
pixels (526 of 845) obtained by the ML were correctly classified by the
SVM as other deciduous (Table 3b).

When comparing the SVM performances with the ML ones, after
filtering (5 X 5 size), a lower, but still significant, Mc Nemar’s test
value (z = 7.11) was obtained (Table 3a). This decrease may have been
due to the reduction of false positive pixels obtained through the fil-
tering. A loss of 364 out of 845 reference A. altissima pixels is evident in
Table 3c.

The application of the median filter to the SVM output map lost
most of the true A. altissima reference pixels, with a decrease of the PA
value (from 61.16 = 0.99% to 3.84 = 0.10%), as reported in Table 2
(ID11). This finding can be due to the fact that the SVM classifiers can
perform better than ML also when trained with limited reference

b

Legend

Other Deciduous Vegetation
A. altissima

Outside Deciduous Vegetation
b 25 som

(b) (c)

Fig. 5. Close-up 2: (a) WV-2 July and (b) WV-2 January images, False Colour Composite: Band 5, Band 7, Band 2. Deciduous plants can be observed. (c) A. altissima
(5 x 5) filtered ML output map from second stage using the July—October image pair as input. In-field polygons of A. altissima, used for validation, are highlighted in

magenta line.
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Fig. 6. Close-up 3: (a) WV-2 July and (b)
WV-2 January images, False Colour
Composite: Band 5, Band 7, Band 2.
Deciduous plants can be observed. (c) A.
altissima (5 x 5) filtered ML output map
from second stage using the July—October
image pair as input. In-field polygons of A.
altissima, used for validation, are high-
lighted in magenta line.

b
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ground truth (Atkinson et al., 2014).

The integration of both natural and cultivated broadleaved decid-
uous pixels, instead, provided a slight increase in the PA value
(64.22 *+ 1.05%), as reported in Table 2 (ID 13). This result may have
been due to the identification of additional A. altissima pixels on the
border of cultivated trees (orchard) and shrubs (vineyards) fields and
evidences the impact of the first stage LC map on the second stage.

4.4. Comparison with other studies

Obviously, the results reported in the present study and those
summarized in Table 1 cannot be directly compared. The findings of our
study were obtained in a different geographical area and by means of a
hybrid technique applied to analyse bi-temporal image stacks.

Specifically, Miillerova et al. (2017b) acquired multi-temporal
Pleiades and UAV images for the mapping of Fallopia japonica invasive
species in the Czech Republic, but analysed the images only on a
monthly basis. Their study reports that, depending on the month ana-
lysed, the performance of the SVM was not always larger than the one
obtained from ML. In (Miillerova et al., 2017b), the same authors report
a better performance of ML respect to SVM when analysing both single

() A

= :

date WV-2 and UAV imagery for the mapping of Robinia pseudoacacia
species in the Czech Republic.

Comparison between the results reported by these authors and those
presented in our study can hardly be made. The results presented by
them were obtained from mono-temporal analysis while no mention of
classifier error is available in their discussion.

The two studies, reported in Table 1, which include A. altissima
mapping, differ respect to ours in regard to the number of species, input
data, techniques and study area. In particular, Da Luz and Crowley
(2010) identify the presence of A. altissima in comparison to that of 49
other invasive species in a site located in Virginia. In their study, the
authors use hyperspectral Sebass airborne sensor and provide a ranking
matrix for each species discrimination without mentioning OA mea-
surements. Dvorak et al. (2015) use multi-spectral drone-based data to
discriminate four classes of invasive plants, among which A. altissima in
the Czech Republic, but report no quantitative evaluation of A. altis-
sima. Therefore, the results reported in both papers do not allow
quantitative comparison with our findings.

Even though the comparison between the data in Table 1 and the
results of our study can hardly be made, the best OA value of
97.96 + 0.14% was achieved in our study for A. altissima detection in

Legend

Other Deciduous Vegetation
A. altissima

Outside Deciduous Vegetation

10 20m

(e)

Fig. 7. Close-up 4: red polygonal areas evidence false A. altissima pixels in the maps originated by using as input to the second stage: (a) July-January pair; (b)
July-May pair; (c) multi-seasonal July, January, May and October set. (d) The same pixels are correctly labeled in the map from July—October pair. The original WV-2
October input image is shown in (e) where the green area corresponds to mixed forest, on the ground. False Colour Composite: Band 5, Band 7, Band 2.
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Fig. 8. Close-up 5 of (a) the July input
image; (b) the January input image. False
Colour Composite: Band 5, Band 7, Band 2.
(c) The classified image obtained from ML;
(d) the classified image obtained from SVM
using the image pair July-October as input.
The black circle evidences a deciduous oak
tree in all figures. The tree was misclassified
as A. altissima by the ML classifier.

Legend

Other Deciduous Vegetation
A. altissima

Outside Deciduous Vegetation

(c) (d)

Mediterranean region with VHR imagery. On the one hand, this result
may be due to the hybrid technique used; on the other it may depend on
the bi-temporal analysis carried out. In fact, when considering VHR
data, excepting Niphadkar et al. (2017), all other studies mapped in-
vasive species through the analysis of only mono-temporal imagery
(Everitt et al., 2005; Peerbhay et al., 2016; Monteiro et al., 2017;
Miillerova et al., 2017a; 2017b). In Table 1, among the studies using
multi-spectral High Resolution imagery (e.g., Landsat, Sentinel-2), only
Gavier-Pizarro et al. (2012) used multi-temporal data, whereas De Sa
et al. (2017) acquired multi-temporal Landsat images to detect changes
in Acacia longifolia spreading, but analysed only one date (November
2013) for the mapping of this species.

Our study indicates that multi-temporal VHR data can be adequate
for A. altissima discrimination and monitoring in the Mediterranean
region. Multi-temporal analysis can prove effective since it can exploit
phenological information useful for discriminating species having
spectral signature similar to other species detected in mono-temporal
analysis. Even though WV-2 includes the RED EDGE band, it lacks SWIR
bands and fine spectral resolution. As a result, the analysis of a single
image can hamper species discrimination.

To reduce the number of VHR images involved in the multi-tem-
poral analysis as well as to decrease related costs, accurate selection of
the most significant seasons (and image) requires prior-knowledge of
the climate and periodic biological phenomena (e.g., plant flowering) of
the studied species.

4.5. Final suggestions

It seems worth recalling that VHR data are acquired only on de-
mand, that no systematic historic archive of acquisitions are available
as well as that regular use by public bodies and decision makers is still
hampered by high acquisition costs. In consideration of these issues,
Blonda et al. (2013) and Turner et al. (2015) have suggested that in
order to reduce VHR costs for supporting frequent monitoring of easily
growing invasive species, policy agreements between space agencies
and national authorities should be encouraged and free access to VHR
data should be guaranteed at least to public bodies (e.g. Protected Areas

0 10 20m

management authorities). In addition, VHR data, with at least one
image per season, should be regularly acquired on the network of
Protected Areas. When combined with other information these data
could provide multi-scale regular monitoring of the conservation status
of the endangered areas. The availability of a large amount of VHR data
may contribute to cost reduction.

5. Conclusions

On-going climatic and anthropic changes are making invasive spe-
cies spreading a global issue whose monitoring and management would
require powerful remote sensing data and techniques, like the ones
proposed in our study. The results of A. altissima mapping in the Murgia
Alta protected site show that multi-spectral VHR satellite data can
discriminate such a problematic species across large areas, especially
when hyperspectral data from aerial campaigns are unavailable.

One of the advantages of the two-stage hybrid classification system
proposed is that no ground reference multi-class data are required in
the first stage, whereas in the second, reference ground data for only
two classes, namely A. altissima versus other deciduous plants, are
needed. Another advantage of the hybrid system is that when an up-
dated LC map is available, the deciduous vegetation layer can be ex-
tracted from such a map and used, along with the two images, as input
to the second stage. Thus, since only two VHR images need to be ac-
quired, the technique allows data collection cost reduction.

The availability of Sentinel-2 multi-spectral images, which are col-
lected with high spatial resolution (10-30 m), every 5 days, could fur-
ther reduce the costs of invasive species mapping since these data are
provided for free by the European Space Agency (ESA Sentinel online).
Even though the spatial resolution of Sentinel-2 data may fail to detect
single invasive trees, due to the possible exploitation of hyper-temporal
information, such data may represent an additional opportunity for
early detection of invasive species.

The results presented in our study may be considered limited since
they relate to the mapping of A. altissima in a single study site of the
Mediterranean region. Obviously, for the findings to be generalized, the
methodology proposed and the data used would require further
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application for the mapping of A. altissima and other invasive species in
different sites. Pending more extensive applications, the results ob-
tained through the hybrid approach can, on the one hand, provide a
significant contribution towards the operationalization of the proce-
dure, on the other, it can favour early species detection. In other words,
compared to other supervised techniques, the approach employed in
this study may open new options for the monitoring of invasive plants
in many areas.
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